Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation
نویسندگان
چکیده
Diabetic nephropathy (DN) is a serious and one of the most common microvascular complications of diabetes. There is accumulating evidence to indicate that advanced glycation end products (AGEs), senescent macroprotein derivatives formed at an accelerated rate under conditions of diabetes, play a role in DN. In this study, we found that the serum and urine levels of C-X-C motif chemokine ligand 9 (CXCL9) were significantly elevated in patients with DN compared with healthy controls. Based on an in vitro model of mouse podocyte injury, AGEs decreased the proliferation of podocytes and increased the expression of CXCL9 and C-X-C motif chemokine receptor 3 (CXCR3), and promoted the activation of signal transducer and activator of transcription 3 (STAT3). The knockdown of CXCL9 by the transfection of mouse podoyctes with specific siRNA significantly increased the proliferation and decreased the apoptosis of the podoyctes. Moreover, the levels of inflammatory factors, such as tumor necrosis factor (TNF)‑α and interleukin (IL)‑6 were also decreased in the podoyctes transfected with siRNA-CXCL9, accompanied by the increased expression of nephrin and podocin, and decreased levels of Bax/Bcl-2 and activated caspase-3. The knockdown of CXCL9 also led to the inactivation of the Janus kinase 2 (JAK2)/STAT3 pathway. Importantly, the use of the JAK2 inhibitor, AG490, and valsartan (angiotensin II receptor antagonist) attenuated the injury induced to mouse podoyctes by AGEs. On the whole, and to the best of our knowledge, this study demonstrates for the first time that AGEs exert pro-apoptotic and pro-inflammatory effects in mouse podoyctes through the CXCL9-mediated activation of the JAK2/STAT3 pathway. Thus, our data provide a potential therapeutic target for DN.
منابع مشابه
Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملEffect of valproic acid on SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and SOCS5B in hepatocellular carcinoma HepG2 cell line
Background and aim: Aberrant activation of diverse intracellular signaling pathways involved in differentiation, cell growth, apoptosis. These pathways include known oncogenic pathways such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. The JAK/STAT signaling pathway plays an important role in many cellular functions. This pathway can be activated by variou...
متن کاملHuang Gan Formula Eliminates the Oxidative Stress Effects of Advanced Oxidation Protein Products on the Divergent Regulation of the Expression of AGEs Receptors via the JAK2/STAT3 Pathway
Chronic kidney disease (CKD) has a high prevalence and low cure rate and represents a significant health issue. Oxidative stress is common in CKD due to metabolic disorders, inflammation, and impaired renal function changing normal proteins into advanced oxidation protein products (AOPPs). Huang Gan formula (HGF) is a new type of traditional Chinese herbal medicine. Although we previously inves...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملRole of Transcription Factor Acetylation in Diabetic Kidney Disease
Nuclear factor (NF)-κB and signal transducer and activator of transcription 3 (STAT3) play a critical role in diabetic nephropathy (DN). Sirtuin-1 (SIRT1) regulates transcriptional activation of target genes through protein deacetylation. Here, we determined the roles of Sirt1 and the effect of NF-κB (p65) and STAT3 acetylation in DN. We found that acetylation of p65 and STAT3 was increased in ...
متن کامل